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ABSTRACT
This paper studies the control system
X(t) = X(x(£)) + ¥Y(x(t))u(t), X(py) = 0, Jult)] < 1 ,

where X and Y are C vector fields on a 3-dimensional manifold M.
Under generic assumptions on X, Y, the structure of the time-optimal
stabilizing controls is completely determined in a neighborhood of poe The
proofs rely on a systematic use of a local asymptotic approximation of X

and Y by means of vector fields which generate a nilpotent Lie algebra.
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SIGNIFICANCE AND ‘EXPLANATION S

- Let £, g be smooth vector fields on ’. The problem of local

stabilization for the control system

X(t) = 2(x(t)) + g(x(t))ult) (%) o]
with £(0) = 0 e %3, u(t)] € 1, is the following. Given a state X in a
neighborhood of the origin, find a control u(e¢) that steers the system ]
from X to the origin. If the transfer is accomplished in the shortest - - 4
possible time, u(°) is said to be time optimal. In this paper, the time
optimal local stablization problem is solved in dimension 3, under generic
conditions on the nonlinear vector fields £, g. Our basic technique is a o]
rescaling of time and space coordinates which tranasforms (*) into the system
g%, * kx:/z) + h(x) .
When h = 0, an explicit solution is found. A perturbation analysis then — ~4

L ] L] L ]
(x1 ,xz,x3) = (u,x

shows that the local structure of time optimal trajectories is retained under
the addition of a suitably small vector field h(°*). As a consequence, the

time optimal controls can be written in regular feedback form.
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THE GENERIC LOCAL TIME-OPTIMAL STABILIZING CONTROLS IN DIMENSION 3
Alberto Bressan’
1. Introduction
Let M be a 3-dimensional manifold, py €M and let X, Y be smooth vector fields

on N with X{pg) = 0. Consider the control system

y(t) = X(y(t)) + ¥(y(t))u(t)

(1.1)

y(0) = p,
where the scalar control u(s) is measurable and satisfies [u(t)| € 1 'almost everywhere.
This paper provides a description of all admissible controls that steer the system (1.1) in
minimum time from po to any point p in a neighborhcod of pg. We show that the

structure of the local time-optimal trajectories is completely determined by the Lie

brackets up to order three of X and Y at pg, under the generic assumptions
(A1) The vectors Y, (Y,X] and ([Y,X],X] are linearly independent at pg,
(A2) ¥, [¥,X))(pg) = Ky ¥(pg) + Kpl¥,X](pg) + Ry[(¥,X],X](pg) with |[K,] # 1.

For the system (1.1), a numerical algorithm yielding a stabilizing control was studied in

17]. Sussmann [12] provided a complete description of time-optimal trajectories for

T / TA/ K] .
analytic systems in the plane. -mho;p:..ontéwork is part of a general progfam of research
o CerThen —
whose goal is to determine the local properties of control systems of the form (1.1f‘from

b O
v £
the linear relations among the Lie brackets of X and Y at Po< Qur main technique is

the local approximation of (1.1) by means of a nilpotent system defined on the same state
space {1]. Somewhat different approximations were discussed in [3, 6) and applied in
(8, 11] to obtain results on local controllability. From (1.1), a suitable rescaling of

time and space coordinates leads us to the system

L ]
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(%, 1%y 0%3) = (u,%,,%, + kxf/z) + hix) ,

(1.2)
(x,e%5,%9)(0) = (0,0,0) , te 0,11 ,

wvhere k = E3, and the vector field h(*) is as small as we please, togehter with all of
its high-order partial derivatives. 1In the special case h = 0, the trajectories of (1.2)
are easily computed as integrals of the control. The time-optimal controllability problem
can therefore be explicitly solved applying Pontryagin's Maximum Principle. We use the
directional convexity of the reachable set and a global necessary condition [2] to rule out
the optimality of bang-bang controls with more than two switchings. In the general case,
h can be regarded as a small perturbation. Repeated applications of the implicit function
theorem complete the prcof. The asymptotic approximation technique used here appears to be

quite general and might be effective in the study of higher dimensional systems as well.




2. The Main Theorem.
As a preliminary, notice that if (A1) holds, by the implicit function theorem the
equation
(Y, [¥,X])(y) = kq(y)¥(y) + Xa(¥) [¥,X)(y) + k3(y) [[¥,X],X)(y) (2.1)
uniquely defines the emooth functions ky(y) in a neighborhood V of po. If (A2) holds
with [K3] > 1, we can also assume [k3(y)| > 1 for all y e V. Two special families of
trajectories will be considered.
Definition. Let y(°*) be an absolutely continuous map from ({0,T] into M with
y(0) = py. We say that y is a BBB-trajectory for the system (1.1) if there exist
0< T, < T, € T such that
¥y = X(y) + Y(y) or y=X(y) - ¥(y) (2.2)
on each one of the (possibly empty) subintervals (0,1‘), (t1,12), (tz,T). We call y{°)
a BSB-trajectory if there exiat 0 < T, < T, <€ T such that (2.2) holds on (0,11) and on
(12,!), while
¥ = X(y) + k31 (y)v(y) (2.3)
on (t1,12).
Our main result states that the bang-bang and the partially singular trajectories just

defined are locally the only optimal ones.

Theorem 1. Consider the system (1.1) and lsat (A1), (A2) hold.
1) 12 |K3] < 1, then there exists a neighborhood V of py in M such that every

time~optimal trajectory steering p; to a point p € V is a BEB-trajectory.

i11) 1f |ﬁ3l > 1, then there exists a neighborhood V of p, such that every
trajectory steering pp to a point p @€ V in minimum time is either a BBB- or a BSB-
trajectory.

By inverting time and the vector fields X, Y, Theorem 1 thus yields the solution of
the generic local time-optimal stablization problem in dimension three. A noteworthy
consequence is that, at least for analytic X and Y, this solution can be written in

regular feedback from {13]. when |E3| <1, (1.1) behaves essentially like a linear

-3-




system. Part i) in Thaorem 1 could already bhe deduced from [10]. when |53| > 1, the

nonlinearities begin to play a major role, and a careful analysis is required. In sections
3, 4 we prove that Theorem 1 is a consequence of an analogous result (Theorem 2) concerning
the system (1.2). The main steps in the proof of Theorem 2 are collected in §5. Technical

details are then worked out in §§6 to 10, which may be skipped in a first reading.
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3. An Bquivalent Result.

By introducing a suitable set of coordinates, (1.1) will be transformed into a more
tractable system on n’. In the following, the variable in R is x= (x,,xz,u,) and
{.' '8y ,.3) denotes the canonical orthonormal basis. Given a smooth vector fileld g =
(94,92,93) on 3, 1its partial derivatives are written

g 3291
9,9" 3;; © 9y T 5;;5§; ¢ oo
Vg denotes the 3 x 3 matrix (91,:)) of first order partials of g. Consider the map
0 (|1,-2,13) + (oxp 8,Y) ¢ (exp 'zt‘l,x])" (exp l_.,[['l,x] ,x])(po) . (3.1)
wvhere (exp sZ)(p) is the value at time s of the solution of the Cauchy problem
yit) = z(y(e)) , yo)=peH .

Because of (A1), O defines a local chart of a neighborhood of pj. 1In this chart,

the system (1.1) becomes
X=f(x) +eu , x(0)=0eR . (3.2)
The vector field f can be written in the form

£x) = (Kyx1/2 o %y + Fxa/2 x4 Kyxl/2) + F(x) (3.3)

1"(0) - ’1,11(0) =0 for i =1,2,3, j=1,2.

8ince the problem is local, we can assume that © is defined on some open ball

with ¢

B € l’ centered at the origin with radius r, and that f can be extended outside B,
to a C. wvector field, still called f, with compact support. We now apply to (3.2) the
asymptotic rescaling procedure discussed in [1]. Consider the orthogonal decomposition
e Wy 0 W, 8 ¥y with W = {EOI)EGI}. Let ¥, : R+ W, be the canonical projections.
Given an admissible control u(*), let ¢t + x{u,t) be the corresponding trajectory of

(3.2)s If u 4is defined on the time-interval ([(0,e], construct the rescaled control

u, t [0,1] + R Dby setting ug(t) = u(€t). Moreover, set

[ 4
xtugt) = 13w xtuee)) (3.4)
1=1
A direct computation shows that x® is the response of the system
x(t) = £5(x(t)) + eu(t) , x(0)=0en (3.5)
vith £ = (I:,!;,f;),
-8
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f:(x) - e"‘ti( ) 3 edm x)) (3.6)
e

For every € > 0, (3.5) is merely a linear rescaling of (3.2). Therefore, a

control u is time-optimal for (3.2) on [0,e] if and only if the corresponding u is
time-optimal for (3.5) on (0,1). Because of (3.3), the main result proved in (1) now
implies that, as € *+ 0, £ converges to the vector field

2x) = (0,xq,x3 + K3x3/2) (3.7)
together with all partial derivatives, uniformly on bounded sets. Theorem 1 thus becomes a
consequence of the following result concerning the system (1.2). If k > 0, we write ﬂk
for the open box (-2,2) x (=1,1) x (~1~k, 1+k) © n?, Ca(ﬂk) for the Banach space of three
times continuously differentiable vector fields on ﬂk, and we let F be the family of

all neighborhoods of the null vector field in C3(nk).

Theorem 2.

a) If 0<k <1, then there exists V @€ F such that for all heV, 0< T< 1, every
time-optimal control u(+) for (1.2) on (0,T)] is bang-bang with at most two
switchings.

b) If k > 1, then there exists U @€ F such that, given any h € {/, every time~optimal
control u for (1.2) on [0,T) € [0,1] has the following property. Either u is
bang-bang with finitely many switchings on [(0,T), or there exist 0 < £ty <ty <T
such that u(t) is constantly equal to +1 or -1 on [0,t4y] and on [ty,T],
while wu(t) = k;1(x(t)) on (ty,t;). Here kj(x) 1is the third coefficient in the
linear relation

o, [@,,g]]1(x) = ky(x)ey + ky(x)[®4,g)(x) + ky(x){l@4,q),ql(x) , (3.8)
with g=7 + h.

c) If k > 1, then there exists V @€ F such that, if hey and u is a bang-bang
control with initial switchings at times 0 < t4 < ty < ty3 =1, then u is not time-
optimal for (1.2) after time 1.

As usual, statements concerning controls in L’ are always meant "up to -

equivalence"”.




4. Proof of Theorem 1.

Let Theorem 2 hold. By possibly replacing Y with =Y in (A2) we can assume
;; > 0. Consider the case 0 < ;s <1 first. Set k = E3 and choose the neighborhood
Ve F according to a) in Theorem 2. Choose € > 0 so small that the reachable set at
time € for the system (1.1) is contained within the range of the chart 6, i.e.
R(e) < O(Bz), and such that cﬂk €cB, h= te -t e V. This is possible because, as
€ + 0, the convergenca of £ to ? in (3.6), (3.7) is uniform on the bounded set ﬂk
{1]. If the control u steers the system (1.1) from py to some peint p e R(e) in
minisum time n € €, then the control ¢t + ut(t) = y(et) is time optimal for the system
(1.2) on the interval [0,nc'1] £ [(0,1]. By a) in Theorem 2, u, is bang-bang with at
most two switchings, hence the same holds for u. Taking V = R(¢), this proves 1) in
Theorem 1. The proof of ii) is similar. If K5 > 1, set X = K, and choose V eF
according to b) and ¢) in Theorem 2. Choose € > 0 such that R(e) € Q(Bt), enk € B,
"-teV for every ne [0,6). If 0 <n < ¢ and the control u is time-optimal for
(1.1) on [0,n), then, setting h = tc - ¥, the control t + ue(t) = u(et) is optimal
for (1.2) on (0,ne” V) £ 10,1]. By b) in Theorem 2, either u_ is partly singular, or

v, is bang-bang with finitely many switchings, hence the same holds for u. In the first

case, comparing (3.8) with (2.1) one concludes that u generates a BSB-trajectory, because

the linear relations among the Lie brackets of the vector fields £, e; are preserved
under the transformation (3.6). In the second case, if u has more than two switchings

inside [0,n), let O < ty < t3 < t3 =N’ <N be its first three switching times. The
L]

control t * u“.(t) = y{n't) has then its third switch at ¢t = 1. Since fn -fTev,

using ¢) we see that u is not optimal after time 1, hence u is not optimal at time

nt
n >n', a contradiction. Taking V = R(€), this completes the proof of part ii).

-7-
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5. Sketch of the Proof of Theorem 2.

In the following, we denote ¥(x) the vector field with components (0,x,,x; + kxflz),
h is the small perturbation and g = § + h. We write Be for the open ball centered at

the origin with radius €. W%hen h £ 0, the exact solution of (1.2) is

x,(u.t) - f: u({s)ds
x, (u,t) = [5 (t-s)u(a)an (5.1)

1 1t 2 k rt 2
xs(u,t) - E'IO(t"’ u(s)ds + 3 ]o(f; u(r)dr) das .

If u is an admissible control, i.e. if |u(t)]| € 1 almost everywhere, then for

t e [0,1] the trajectory t + x(u,t) is contained inside the closed box

{=1,1] x [« %-. JJ x [~ Eél ’ EEJJ- By a classical perturbation theorem [5), there exists
a bounded neighborhood Vo e F such that, if h e V;, every admiss..ie trajectory for
(1.2) remains inside ﬂk during the time interval (0,1]. The neighborhood Vg now
chosen will be kept fixed throughout. The first part of our proof will single out all

solutions of the Pontryagin's equations for (1.2) on any interval [0,T] € [0,1].

[ L) k 2
(x,,xz,xs) (u + h’(x), x, + hz(x), x, + 3 X + h3(x)) .
(5.2)1
- - 3
Ak = -0y vy v, LTURLYS
A, +I3  n 2 £33 n, A)) (5.2)
3 i=1 4,271 ¢ i=1 71,374 4 cel2
(x11x2133)(o) = (0,0,0), (A10121A3)(T) - (T1pxzr';3) ’ (5-2)3
u(t) € sgn k1(t) a.e. on [0,T] , (5.2),

where )\ = (i},i&,XS) # (0,0,0), 0 <T< 1 and the convention sgn 0 = [~1,1] is used.
Notice that for every data i' and T, (5.2)1_4 has at least one solution. Indeed, the
compactness of the reachable set R(T) implies the existence of a control U for which
x(u,?) = max{<X,x>; x € R(T)}. Such U clearly ylelds a solution of (5.2). Different

types of extremal controls arise, depending on the direction of A,

-8-
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Proposition 1. There exists V, € F such that, if heV,; and
-2 2
A

corresponding control u is bang-bang with at most one switching.

< (12k + 16)-2(71 + 722), then the solution (u,x,A\) of (5.2) is unique and the

Proposition 2. For every € > 0 there exista {/, € F such that, 1f heV, and
by 2 2

3 + i}z), then any solution (u,x,A) of (5.2) satisfies

> (12x + 16)'2(')?1
Ay (t) € [(1 - k sgn A, (t)) + B_X, (5.3)

a.e. on [0,T].

The two above results together imply part a) of Theorem 2. Indeed, let 0 € k < 1
and choose the neighborhoods V4, V, according to Proposition 1 and 2 with € = (1-k)/2.

1f helynV, and if (u,x,A) is a solution of (5,2), then either
-2 2
A3 1
-2 - o
switching, or X3 > (12k + 16) (A

-2 - -
€ (12k + 16) (A + X22) and by Proposition 1 u is bang-bang with at most one

2
1

€, A1(t) has a.e. the same sign of A3(T) - XS # 0. Hence X1 is either strictly concave

+ Tzz). In this case, by (5.3) and the choice of

or strictly convex on (0,T] and can vanish at most at two distinct points. The
corresponding control u is therefcre bang-bang with no more than two switchings. Next,
we assume k > 1 and study the case where the third component of kY is large compared

with the others.

Proposition 3. If k > 1, there exists V3 @ F such that every solution (u,x,\) of

2

(5.2) with h e V,y, 732 > (12k + 16)’2&1 + 722), 73 < 0, has the following property.

There exist 0 < T, < 7, € T such that u is constantly equal to +1 or =1 on 0,741
and on [tz,T], while u(t) = k;1(x(t)) on (11,12). Here k3(x) is the scalar function

defined at (3.8).

Proposition 4. If k > 1, there exists V, € F such that, for every solution (u,x,}\)
-2 -2 -2 =2 -

of (5.2) with h eV,, Ay > (12k + 16) (A;" +1,’) and Ay > 0, either the control u

is bang-bang with finitely many switchings on [0,T], or u(t) = k;1(x(t)) throughout

{o,71.




Propositions 1, 3 and 4 clearly imply part b) of Theorem 2. To prove ¢), define the

set of vectors

3 2
2,v3) € R w3

Choose {4 € F according to Proposition 1. An application of Theorem 2 in [2) yields

A= {ws= (w,,w > (12 + 16)2(w1; + wg)} .

Corollary 1. If h e l,, then the reachable set R(1) for the system (1.2) is
A - convex, i.e. R(1) containa the point &p + (1-£)q whenever p, q € R(1), £ € [0,1]

and p-q € A.

Let now u be a bang~bang control satisfying Pontryagin's conditions and having a
third switch at time ¢ = 1. To prove that the value x{(u,1) of the corresponding
trajectory at time 1 1lies in the interior of R(1), it suffices to exhibit a second
admissible control. say u', such that

xi(u',1) = xi(u,1) for {=1,2 , x3(u',1) > x3(u,?) . {(5.4)
Indeed, if {(u,x,A) is a solution of (5.2), then X3(1) > 0 because of Propositions 1 to
3. The vector w = x(u',1) - x(u,1) = (0,0,x3(u’,1) - x3(u,1)) therefore has a positive
inner product with A{1) and lies in the interior of A. By Theorem 1 in [2],
x(u,1) @ int R(1). To complete the proof, we only need to show that such a control u'

+

always exists. For a, b, ¢ » 0 define the control u = u*(a,b,c) by setting

ut(a,b,c)(t) =1 for t e [0,a)u [a+h, a+tbéc) ,
(5.5)
utta,b,c)(t) = -1 for t e [a, atb) y [atbtc, =) .

+

1f a,B,y > 0, define u (a,8,Y)(t) = -ut(a,8,7)(t). call x* = x*(a,b,c) the point

reached by the system (1.2) at time T = atb+c, subject to the control ut(a,b,c) and

define x~ = x-(a,B,Y) similarly. 1In the special case h = 0, the components of x*, x~

can be explicitly computed from (5.1):

=10~




T,
’

xy = abtc , xj = (atbtc) /2 = (be) + 2,

x3 = 3 (3 tasbrer® - (bre)? 4 P 4 kad ¢ bea)? 4 L (embra)®)
(5.6)
- - 2 2 .2
X, = -a+B-y |, x, = ~(a+B+Y)“/2 + (B+y)° - Y° ,
x; =3 (- 3 tas6en)® + (B)? - % ¢ ka® ¢ (8-0) + F (v-Be) P}
The three conditions
Xy =Xy 4 Xy =X, 4 atbtc = adBey = T (5.7)
imply the relations
a=Dbc/(atc) , B =a+c , Y = ab/(a+ec) , (5.8)
a=8y/(aty) , be=aty , c=ab/laty) . (5.9)

When these are satisfied, we have Ax = x'(a,b,c) - x (a,B,Y) = (0,0,x; - x;) and a direct

calculation (see Appendix) shows that

+
x

3" x; = [(a+b+c) - k(a=b+c)]abc/(a+c)

(5.10)

= [(a+B+Y) + k{a-B+y)]aBy/(a+y) .
If a,b,c >0 and u*(a,b,c) satisfies the Maximum Principle on [0, T+e] for some

€ > 0, then the corresponding adjoint variable A in (5.2) satisfies

Ae) =%, >0 vee [0, ,

Ajta) = A (a+b) = X, (a+b+c) = 0 ,

;1(e) = (14k)X, for t e (a, ath) ,
;1(c) = (1=X)X; for t e (a+b, atbéc) .

The above relations imply (k+1)b = (k-1)c. Using this equality in (5.10) we obtain

x; - x; = (1-k)a’be/(atc) <O . (5.11)
1f u = u*(a,b,c), consider the control u' = u (a,R,y) with a, B, Y defined at
{S5.8). When T = a+b+tc = 1, (5.7) and (5.11) imply (5.4). Therefore u cannot be optimal
after time T = 1. The case where the bang-bang control u takes initially the value

-1 can be treated similarly. Let u = u (a,B,y) for some a, B, Y > 0. If Pontryagin's

equations (5.2) are satisfied, then (k=1)B = (k+1)Y. Consider the control u' = u"’(a,b,c)

-{l=




with a, b, ¢ defined in texms of a, B8, Y at (5.9). From (5.10) and the above equality
we now obtain

x; = x; = (ketia’y/(asy) > 0 . (5.12)
When T = a++y = 1, (5.7) and (5.12) imply (5.4). Therefore u = u~ cannot bs optimal
after time T = 1., This establishes part c) of Theorem 2 in the case h £ 0. Thanks to
the implicit function theorem, the above arguments remain valid when a small perturbation

h 1is added to the vector field ¥ in (1.2).

Proposition 5. There exists Us € F such that, if h € Vg and if u is a bang-bang
control with initial switchings at times ¢4 : 0 < t4 < t3 < t3 = 1 which satisfies
Pontryagin's equations (5.2) on (0,1} with X1(1) = 0, then there exists a second

admissible control u' such that (5.4) holds.

This will complete the proof of Theorem 2.

-12-
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6. Proof of Proposition 1.
Lerma 1. Let k>0, A e® with A = (f+ xg + xi}@ = 1. Set n = (12k+16)~ and
assume Xg < nz(kz; + X;). Then at least one of the following holds
i) lx1| > |x2; + (zx+1)|x3| + (2k+4)n
1) Al (zk+1)|13| + (2k+d)n.
Indeed, if 1i) fails, since |>.3| < n we have
gl =gl = gl o1 - [(2k+1) [A,] + (2k+d)n) = n
> (8k+10)n > |2, ] + (2x+1) 25| + (2x+a)n
Lemma 2. There exists a constant M > 0 such that every solution (u,x,A) of (5.2)1-4

with |X]| = 1, h € Uy, satisfies
Ml |ne))cm  vee o (6.1)
Ik e)| €M, lhe)|<m , 1=1,2,3 , teom . (6.2)

Proof. Since V; is bounded in ca(ﬂk), the operator norms of the matrices Vg(x) of
first order partial derivatives of g = F+h satisfy a uniform bound, say |Va(x)| < W,
for allh e Vp, x e a,.

By (5.2),, (6.1) holds with M = e". The bounds in (6.2) follows from (5.2),., and
(6.1), with a possibly larger constant M.

To prove Proposition 1, it clearly suffices to consider the case |T| = 1. Set n =
(12x+16)~1 ana dgﬂno n' = n/3M, with M being the constant in (6.1), (6.2). Choose a
neighborhood V4 € Vg in F such that Ihi'j(x)l <n' for all xef, hevy,

i,5 e {1,2,3}. By Lemma 1, two cases must be considered.

case 1. Let [X;| > |X,| + (2k+1)[X,| + (2k+4)n. Then for t e [0,T] S [0,1], using
(5.2), we obtain
i8] < 3n'man
0] < Xyl +n ' (6.3)
|i2(t)l < |§5| +n+ M, (6.4)

A < |-k-2| + |33| +2n ,
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|X1(t)| <X+ 1% ] + 20 + 2([X5] +m) + 30w,
geer] 2 g1 = (a0 + [A5] + 2n) = k(A4 ¢y -n2n>0 .
Therefore x1(t) ¥ 0 throughout the interval ([0,T]. From (5.2), we deduce u(t) =

sgn X,(t) = ggn T,. The control u is thus uniquely determined and constant throughout

{o,T].

Case 2. Let [X,| > (2k+1)[%,| + (2k+4)n. From (S.2);_p, using (6.3) and (6.4) we now

obtain
lxztt)l > lle - |x3| -2n ,
. - — - (6.5)
Ryeer] 2 (13,] = 15l = 2n) = 2x([Ay] #n) = 3n'M2 >0 .

By (6.5), A,(o) is a strictly monotone function, with at most one zero. By (5.2)4, the
corresponding control u(*)} is bang-bang with at most one switching inside [0,T). We
claim that such a control u is unigue, whenever h € V,, for a suitably small neigh-
borhood V4 € F. To set the ideas, assume i} > 0, the case i} < 0 being entirely
analogous. Define the set

2,22
(3950, A, > (2ke1)[2,] + (2kedin}

r=Oe’s Al =1, 2% <n
and fix xeT,0¢T<1. For t € [0,T] define the control u(t,*) by setting
u(t,t) = 1 when t € [0,T], u(t,t) = ~t when t € (7,T], and let x(7,*), A(T,*) be the
solutions of (5.2)4.3 corresponding to the control u(T,*). Since K'e I', we already know
that any solution of (5.2)y_4 is of the form (u(t,*), x(1,*), A(t,*)) for some T € [0,T].
Notice that (5.2)4 holds iff either t = 0 and A'(0,0) €0,0or 0C<CTCCT and
X1(T,T) = 0, or T=T and A‘(T,T) > 0. Uniqueness will be esatablished by proving that
Lanmco  vre . (6.6)
when h 2 0 in (1.2), a direct calculation yields
x (1,8) = 21=-8 vse [t,T] .
Xa(t,s) = 35

A(r,e) =X+ IE[XE + (T-8)X, + k(21-0)X las ,

R Aztt,s) = 3} + (T—a)is '

a
3T Myt = -Tz - (-r-t)T3 - krTs + 2k('r-1)T3

€%, + (1H20[3,] +xn € -(x#3In < 0 . (6.7)
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This proves (6.6) when h 2 0. To cover the general case, notice that (6.7) holds
uniformly as (1.7,0) range in the compact set {t,T€R; 0 ¢ t < T < 1} x 'y Moreover, by
the implicit function theorem, the total derivative of x.l('r,t) Ww.r.t. T depends
continuously on <, T, % and on the partial derivatives of order < 2 of the vector
field h. Therefore, if the neighborhood V1 @€ F is suitably small, (6.6) still holds for

any h e V,. This completes the unigueness proof.
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7. Proof of Proposition 2.

Again it is not restrictive to assume |T| = 1. In this case the assumptions imply
|Y3| > (24k+32)72, ret M be the constant in (6.1), (6.2) and choose some o > 0 for
which

(24k+32)2(9+9n+10k)m <e . (7.1)

Choose V, e F contained in V; such that
[y, 4tx)| €0, {h1'j,,(x)f <o , |nx)| <o (7.2)
for all heVy, xeqQ, 1,5,2 e {1,2,3}. Since the right-hand side of (4.3); is abolutely

continuous, we can differentiate (4.3)2 once more:

T et -kt - -3 g3 sy _ g3
S LR R RIS AP TP () LR VEER A FEN L P (7.3)
Using the bounds (6.1), (6.2), (7.1}, (7.2) and the relations
. 3
SRR R D W By RUOA = kudy = kb (x)y (7.4)

3
|X3| - |zi_1 hi'akil < 3oM |, |A3(t) -X] € 30m , |x1| < 2
we obtain

A () = (1 = ku(t)h,| € (9+10k+9M)M0 < €(2ak+32) 2 € eha| .
1 3 3
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8. Proof of Proposition 3,

Set € = (k-1)/2 and choose V' @ F according to Proposition 2. Choose V* eF so
small that, whenever h @ V* ana g e ¥+h, the following conditions hold at every point
x € Qk.

i) The vectors ey, [ey,gl(x) and ({leq,9],g9](x) are linearly independent.

i1) In (3.8), k3(x) > 1.

- Such a V" exists. Indeed, when h = 0 we have g = ?t and [@y,21(x) = (0,1,kxy),
04,21, 2)(x) = (0,0,1), (@y,[e,,)]1(x) = (0,0,k). 1In this case the coefficients of the
linear combination (3.8) are k¢(x) = ka(x) = 0, k3(x) = k>1. By continuity, the

h conditions i) and ii) remain valid when h ranges within a suitably small neighborhood of
the null vector field in Cs(ﬂk). Now set V3 = V' n V" and let (u,x,A) be a solution
of (5.2) with 732 H (1zk+1s)'z(T12 + 722), Xy € 0. We claim that § =

{t e [0,7]7 A (t) = 0} is a closed interval, possibly empty. If t4, t; € 8, let

|x1(n| - mx{|l1(t)|' ty¢t<t}. 7L A (1) ¥0, then u(t) = sgn A, (t) is constant
on a neighborhood of 7T, hence X1 is twice differentiable at <T. Since Ts <0, (5.3)
and the choice of € imply that sgn K1(1) = ggn A1(r), a contradiction that proves our
claims If S is empty, Proposition 3 trivially holds by setting Ty =T, " 0. If S
contains a single point T, set 11 = 12 = ¥, Finally, let S be a nondegenerate
interval, say [11,12]. We need to show that u(t) = kS‘(x(t)) a.e. on 8. The relations
X1(t) - i,(t) - K,(t) = 0 imply

<A(t), .1> =0 ,

<h(t), o> = A(t), Vgix(t))e,> = <A(t), le ,gl(x(t))> =0 ,
A L), > = =S aale), ley,g) (x(t))> 1
]
= <A(t), Vg(x(t)) (o1q](x(t)) - V[.1,q1(x(t)) {g{x(t)) + u(t)o‘)> ;
= <A(t), [[.1191 gl (x(t)) = \l(t)(‘.'[.‘.gl](x(t)b =0 _,
S8ince A(t) never vanishes, for t € (11,12) the vectors e, [e4,9){x(t)) and i
{{@y,9) /gl (x(t)) - u(t)[ey, [ey,g]](x(t)), being orthogonal to A(t), are linearly
dependent. Because of the assumption i), u(t) 1is uniquely determined and thus coincides 1
with ¥3'(x(t)), defined by (3.8). ®
]
4
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9. Proof of Proposition 4.
Some preliminary technical results are needed.
Lemma 4. Let T >0 and let ¢ be a twice differentiable cuncave scalar function, with

¢(0) = §(1) =0, 3(0) >0, and let 0, my, my be positive constants such that

“m, < 4(e) € -m, <0, [#(6) - d(e)] < alemer] (9.1)
for all ¢, t' e [0,T]., Then
l4eer] > $c0) - som, + 2m w7 $%c0) (9.2)

Proof. The first assumption in (9.1) implies <t € [2‘(0)/-2, 23(0)/m1]. let a =
-;(0) > 0 and define the energy E(t) = ‘2(t)/2 + ad(t). Then
1B 2 dercaeer + ] < boo(r 4 ;:EJCt.
Integrating from 0 to T we obilin
12(1) - &) | < 200m, + 2m 87 200 . (9.3)
This implies (9.2) because

I3ty ] = |6cor] = (42ct) - $20n([$(r)] + |dcoryy”!

< |z(v) - B0y {$eoy|”? .

Lemma 5. Let (d) 5, be a sequence of strictly positive numbers such that 4,,,? dn-cq3

for some constant C > 1 and all n ? 1. Then 2;_1 dn = 4o,

Proof. If the series converges, then 4, * 0, hence dn € 1/2C for all n > N, with N
suitably large. We claim that dy,, > n"du+1 for all n > 1. Indeed, if this inequality

holds for some n, then

2
Qansy > min{x - Cx“; Buyg/n € x € 1/2¢C) =
1 c c 1
i Bl Gr ? (g - 2 3 %41 % G/ (1)

By induction, our claim holds for every n 2 1, showing that the geries diverges, a

contradiction.

lemma 6. Let h € VO and let t * (x(t),A(t)) be any local solution of the autonomous

differential equation on ot
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x(t) = g(x(t)) + @ £it) = =r(t)eTg(x(t))

1
obtained by setting u(t) = 1 in (5.2)4_5 There exists a constant ¢' such that

[tad/aen ()i < ot [aced], l(araen (e)| < o' {rce)] (9.4)
whenever x(t) @ ﬂk. The smallest possible constant o' in (9.4) approaches zero as the
veactor field h = g-¥ tends to zero in Cs(ﬂk). The same holds for the system

x(t) = gi{x(t)) ~ e,, K(t) = =A(t)eVg(x(t)) .

1
All of the above is clear because the left hand sides in (9.4) depend continuously on
%, A and on the vector field h e Ca(ﬁk). and vanish identically when h = 0.

Proposition 4 can now be proved. Fix € = (k-1)/2, choose Vz,V3 e F according to
Proposition 2 and 3 and set V, =V, nV;. ret he V; and let (u,x,A) be a solution of
(5.2) with IKW -1, hy satisfying the assumptions made in Proposition 4. 1If A1(t) =0
for all t e [0,T], then (u,x,-A) is another solution of (5.2), hence by Proposition 3
u(t) = x;1(x(t)) for all t. Now assume A (T) ¥ 0 for some t € [0,T]. Then [t,T]
contains only finitely many zeroces of X1. To see this, set my = (k-1-e)i;, my =

(k+1+e)§s. Whenever x1(g) ¥ 0, u 1is constantly equal to sgn A'(t) on a neighborhood

of t, hence X1 is three times differentiable at t. By (5.3)

o
<= }x1(c); < -m <0 . {9.5)
at

It k1 vanishes infinitely many times inside ([1,T], 1lat To be the smallest time.

Recursively, set Tn

-nz

4 = inflt e (1 Ty A[(t) = 0}. By (9.5), i1(1°) #0 and T, is an

isolated zero of X1. By induction, one easily checks that the same holds for every n,
hence the sequence (Tn)n>1 is strictly increasing. We now apply Lemma 4 to the function

P(t) = |A1(rn+t)l for each interval [Tn,Tn+1). The second eatimate in (9.1) is obtained

from (9.4) and (6.1), setting o = Mo', Using (9.2) we deduce

[3 '3 -3 .
lx,(rn*1)l > |x1(rn)r - dotm+2m)m " X (T 2] .

If infinitely many T  ware defined, by Lemma 5 En_o|i1(rn)| = 4o, From (9.5) it follows

1 -1 228 ¢t )Im!, hence 1im t_ = +*, providing a contradiction. An analogous
n+1 n 1" n 2 nee n
argqument shows that 11 can have only finitely many zeroes inaside [0,T]). Hence the

corresponding control u is bang-bang with finitely many switchings.
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10. Proof of Proposition 5.
We restrict the analysis to the case where u(t) = +1 on the initial interval

(0,£4)¢ when u(t) = -1 on fo,tq) an entirely analogous argument applies.

Lemms 7. For every h in a suitably small neighborhood Vv € F, there exists a unique
one-parameter family of bang-bang controla u(f) = u+(a(E).b(E),C(E)), £ e [0,1/2), having
a first switch at time t = £ and a third switch at t = 1, which satisfy Pontryagin's

equations (5.2) on the time interval [£,1] with x1(c) - A1(1) - 0,

Proof. V¥henever h € V is small enough, the proofs of Propositions 1 to 3 show that the
adjoint varlable A(*) in (5.2) corresponding to a bang~bang control with at least two
switchings inside [0,1] must satisfy

A8 > 0, X (O/A(1) = (1 - ku(e))] € (k=1)/2 (10.1)
a.e. on [0,1]. To construct the one-parameter family u(f), for a fixed h e c3(nk),
g=%h and § e [0,1/2], let u-= u+(£.t2-€,1-t2) be the control whose value is
initially +1 and has switchings at times £, ty, 1, as in (5.5). Consider the Cauchy

problem on IP. starting at time t = £:
x(t) = g(x(t)) + e u(t) , K(t) = -A(t)Vg(x(t)) .
(10.2)
x(§) = (exp E(g*‘,))(O) e AE) = (0,v,1)

for some V € R. The above data determine uniquely a trajectory t + (x(t),A(t)). From
(10.1) it is clear that the control u = u+(E,t2-£,1~t2) satisfies the Maximum Principle
(S.2) on a neighborhood of the interval (f,1] iff x1(t2) - X1(1) = 0. We claim that
tor V e F guitably small, the conditions
X1(t2) = 11(1) =0 , £ < tz <1 (10.3)

implicitly define t,, v uniquely as functions of h, §, for all heV, ge [0,1/2).
Indeed, when h = 0, the equations (10.1), (10.3) can be solved explicitly, first for v
as a function of t, and £, then for t, In terms of &£:

M) = (£,°6)(=v-kE) + (£-8)%(1-k)/2 . (10.4)
The right-hand side of (10.4) vanishes at the point t, € (£,1) iff

v o= (tz-E)(1-k)/2 - k€. 1In this case
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A (1) = (1=t,) (=60 (14K} /2 + (1=t5)2(1-K)/2 (10.5)
hence A1(1) -0 iff
(tz'E)/(1-t2) = (k=1)/(k+1) . (10.6)
The exact value of t, as a function of £ is immediately obtained from (10.6). From

{(10.6) it also follows
(£,-8) > (k=1)/4(k+1) , 1+§=2t, >0 , 11-t, > 1/4 (10.7)
for all £ e [0,1/2]. Differentiating (10.4) and {10.5) w.r.t. Vv and t, respectively

and using (10.7) we obtain

A (t,)
1°72 k=1
Ta I T (10-8)
ax1(1)
3 = (14§=2t_)(k+1)/2 + (k=1)(1-t_) > (k=1)/4 > 0 . (10.9)
t, 2 2

By the implicit function theorem, there exists a neighborhood V e f such that
{10.2), (10.3) determine (tz,v) uniquely as €} functions of th,g) in V x [0,1/2).
This proves Lemma 7, by setting a(f) = §, b(§) = tz(E)-E, c(E) = 1=t,(5).

Next, it will be shown that Proposition 5 holds if the bang-bang control u belongs
to the one-parameter family u+(a(E), b(e), c(f)) just defined. To this purpose we need a

technical result, whose proof is straightforward.

Lemma 8. lLet Ve F and let (h,E) + ¢(h,E) be a C2 map from V x (0,1/2] into R
such that ¢(h,0) = 0 for all h eV and ¢(0,E) > 0 for all £ € (0,1/2). Assume that
either i) (34/3E)(0,0) > 0 or ii) (34¢/3E)(h,0) = 0 for all h el and
(324/3£2)(0,0) > 0. Then ¢(h,§) > 0 for all £ e (0,1/2] and all h in some
neighborhood of the null vector field in Ca(ﬂk).

For h e V suitably small, we now construct a second one-parameter family of bang-
bang controls u'(E) = u (a(£),B(E),Y(E)), choosing &, B, Y such that a+B+y = 1 and

the equalities in (5.4) hold, i.e.
w (exp Y(E)(g-e,) ) (exp B(E)(g+e1))(exp a(E)(g-e,))(0)
(10.10)
= 7, (exp c(E)(gte,) ){exp b(E)(g~e,))(exp alf)(gte ) )(0)
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for i = 1,2. when h = 0, (10.6) implies

a(f) = £, b(E) = (k=1)(1-E)/2k, c(€) = (k+1)(1=E)/2k (10.11)
and a(E), B(E), Y(£) are obtained substituting the values (10.11) in (5.8). By the
implicit function theorem, the condition a(f) + B(E) + Y(E) = 1 together with (10.10)
defines a ¢ map (h,E) + (a,8,Y) on V x (0,1/2), for a suitably small neighborhood
V e F. Notice that when h 2 0 and £ ranges inside (0,1/2), a(§) and B(§) are
strictly positive, while Y(E) > 0 for £ > 0. Moreover, (dy/df) = (k=1)/(k+1) > 0 at
E = 0. Setting ¢ = Y 4in Lerma 8, we deduce Y(f) > 0 for all (h,E) € V x {0,1/2] with
V small enough. Therefore the bang-bang control wu(£) = u (a(£),B(E:,Y(E)) is well
defined. To prove the last inequality in (5.4), set ¢é(h,§) = xa(u'(E),1) - x3(u(£),1).
For any fixed h, when £ = 0 (10.10) has the obvious solution a(0) = b(0), B(0) = c(0),
Y(0) = a(0) = 0. Call u the control u+(a(0),b(0),c(0)), which coincides with
u {a{0), B(0), Y(0)) for all t e [0,1], and let t + (x(t),A(t)) be the corresponding
trajectory and adjoint variable in (10.2). Since i1 vanishes at times 0, t; = b(0), 1,

as £ » 0 we have

G(1), x(ut(a(E),blE),c(€)),1) = x(1)> £

= 1) X (0 10" (a(E) BB ,e(E)) (8] = u'(al0),b(0),c(0)) (t) 14t
+0EHe = o) .

The same holds for u (a(£),B(£),Y(E)), therefore

1im (1), x(u7(£), 1) - x(u'(§),1»>E' = i3(1)(a¢/35)<h.0) =0 . (10.12)
£+0

From (10.12) we deduce (3¢/3£)(h,0) = 0. When h = 0, (5.10) and (10.11) imply

(k=12 (k+1) (1-£)2

$0.8) = R0
hence (3%6/067)(0,0) = (x-1)%/k > 0. By Lemma 8, x (u'(E),1) = x(u(£),1) > 0 for all
£ e (0,12] and h in a neighborhood of the null vector field.
To conclude the proof of Proposition 5, notice that for every constant €' > 0, in

(5.3) we can choose € > 0 so small that the conditions
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]

. A ()X = (1=k)| € € for te (0,t)) U (£, 1)

h I (0)/3; = (#k)| €& for te (tyity) o]
°

together with X1(t1) - X1(t2) - X1(1) =0, A1(t) >0 on (0,ty) Aimply

: [te=tq)/01=t5) = (k=1)/(k#1)| < €', £, € (1=t,) +€' . (10.13)

For €' > 0 suitably small, (10.13) implies t4 € [0,1/2). Therefore, if h e V is small

Lo s

enough, a bang-bang control u, which is initially positive and has switchings at times
0 ¢ty <ty <tz =1, can satisfy Pontryagin's equations (5.2) only if ¢4 < 1/2. But in
this case u is the member of the one-parameter family of control functions

i u+(a(€).b(€).c(i)) obtained by setting £ = t;. Hence Proposition S holds for u.
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Appendix.
i The equalities (5.10) are obtained from (5.6) to (5.9), using the relations ab = By,
af = bc, as follows.

- 30xy-x3) = (atbrc)? = (bre)d + cd - (Y 4 v

+ k[a3 + (b—a)3 - 03 - (8-0)3 + (a-b+c)3]

-ad+ 3a2(h+c) + 3a(b+c)2 + (b+c)3 - (b+c)3 +c? - 83 - 3827

3

- 38y2 - y3 +y3 4 x(ad + (b-a)? - o - 8% + 38% - 3802

+ad + &3 - 3c2(b-a) + 3c(b-a)2 = (b=a)d

= a3 + 3azb + 3a2c + 3ab2 + 6abc + 3ac2 + c:3 - (l3 + 3azc

+ 320 + c2) - 3B/ (atc) - 3(ad + abc) + x[a® - (a°

+ Sazc + 3ac2 + 03) + 3(abc + bc*) = 3b2c2/(a+c)

2

+ &2 = 3pc? + 3ac2 + 3b%c - 6abc + 3a’c

= 3ab2 + 3abc - 3a%b2/(atc) + k[-3abc - 3b2c?/(at+c) + 3b%c) .

2

x; - x; - (,252 + ab“c + azbc + abc2 - azbz)/(a+c)

2 2

- x(a’bc + abe? + b2e? - ab%c - b2c?)/(atc)

= i%% [atbtc = k(a=bic)] = %g% (a+BHY+k(a~B4Y)]
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